A CONVENIENT SYNTHESIS OF TERT.ALKANESULFONAMIDES

K. Hovius and Jan B.F.N. Engberts^{*}
Department of Organic Chemistry, The University,
Zernikelaan, Groningen, The Netherlands.

(Received in UK 24 November 1971; accepted for publication 9 December 1971)

Attempts to prepare <u>tert</u>.alkanesulfonamides from the reaction of a <u>tert</u>.alkanesulfonylchloride with ammonia or amines have been unsuccessful.¹⁻³ The few <u>tert</u>.alkanesulfonamides known to date have been synthesized by other routes, <u>e.g.</u> oxidation of the corresponding <u>tert</u>.alkanesulfinamides.^{2,4}

We wish to report that primary, secondary and tertiary <u>tert</u>.alkanesulfonamides can be obtained in reasonable yields upon treatment of a <u>tert</u>.alkanesulfinylchloride with the appropriate hydroxylamine in ether or ether-CH₂Cl₂ at room temperature.

tert.RSOC1 + 2 R'R"NOH
$$\longrightarrow$$
 tert.RSO₂NR'R" + R'R"NOH.HCl
la-lg; tert.R, R' and R": see Table

Yields and physical constants of <u>la-1g</u> are listed in the Table. Structural assignments of the new compounds are based on elemental analyses and IR (ν_{SO_2} at 1120-1145 and 1290-1335 cm⁻¹) and NMR spectral data.

Mechanistic details of the reaction are unclear at the moment. In no case was the expected <u>N-tert</u>.alkanesulfinylhydroxylamine isolated.⁵ However, nucleophilic attack of the hydro-xylamine nitrogen atom on the sulfinyl sulfur seems most plausible as the first step since the <u>O</u>-substituted hydroxylamine <u>2</u> (b.p. $60^{\circ}/1$ mm; IR: $\nu_{S=0}$ at 1095 cm⁻¹) was isolated in a yield of 60% from the reaction of <u>tert</u>.c₄H₀SOC1 with <u>N</u>-methyl-<u>O</u>-methylhydroxylamine.

$$(CH_3)_3CSOC1 + 2 CH_3NHOCH_3 \longrightarrow (CH_3)_3CSOC1 + CH_3NHOCH_3 + CH_3NHOC$$

The conversion of benzene- and p-toluenesulfinylchloride with H_2NOH into the corresponding sulfonamides has been reported in the early literature¹, but the replacement of H_2NOH by <u>N</u>-substituted hydroxylamines leads to complicated mixtures containing <u>N</u>-hydroxysulfonamides.⁶

	tert.R	R'	R"	Reaction time (hrs.)	Yield (%)	М.р. ([°] С)
<u>1</u> a	(CH_3)3C	н	н	4	59	162-165
<u>1</u> ъ	(CH_3)3C	н	снзснзснзснз	16	39	37.5-39
1c	(CH_3)_3C	н	cyclo-C6H11	4	41	112-115 ^ª
<u>1</u> a	(CH_3)_3C	н	(сң ₃) ₃ с	4	45	108-110
<u>1</u> e	(CH_3)3C	с ₂ н ₅	с ₂ н ₅	16	13	b.p. 66/0.3 mm
<u>1</u> f	1-Adamantyl	н	н	2	56	196-198 ^b
<u>1</u> g	1-Adamantyl	н	<u>cyclo</u> -C6 ^H 11	6	68	178-180 ⁰

Table: The alkanesulfonamides tert.RSO_NR'R" (1a-1g).

^aLit.² 118°. ^bLit.⁴ 197-198°. ^cLit.⁴ 178°.

General procedure:

A solution of 0.005 mole of the <u>tert</u>.alkanesulfinylchloride in 50 ml ether or ether-CH₂Cl₂ (1:1; <u>1</u>b and <u>1</u>g) was added dropwise under nitrogen in the dark to a solution of 0.010 mole of the hydroxylamine in 10 ml ether over a period of 15 min. After stirring the mixture for 2-16 hrs. (see Table) the precipitated salt (yield 80-100%) was filtered off. Evaporation of the solvent <u>in vacuo</u> gave the crude product. Pure <u>1a-1</u>g was obtained by distillation or crystallization (usually from petroleum-ether $40-60^{\circ}$).

REFERENCES

1. H.F. Whalen and L.W. Jones, <u>J. Amer. Chem. Soc.</u>, <u>47</u>, 1353 (1925).

2. R.T. van Aller, R.B. Scott Jr. and E.L. Brockelbank, J. Org. Chem., 31, 2357 (1966).

- 3. H.C. Buchholt and A. Senning, Acta Chem. Scand., 24, 2255 (1970).
- 4. H. Stetter, M. Krause and W.D. Last, Chem. Ber., 102, 3357 (1969).
- 5. Compare: G. Zinner and W. Ritter, Arch. Pharm., 296, 681 (1963).

6. K. Hovius and J.B.F.N. Engberts, unpublished results.